Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 22263, 2023 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-38097644

RESUMO

The human sulfatase HSulf-2 is one of only two known endosulfatases that play a decisive role in modulating the binding properties of heparan sulfate proteoglycans on the cell surface and in the extracellular matrix. Recently, HSulf-2 was shown to exhibit an unusual post-translational modification consisting of a sulfated glycosaminoglycan chain. This study describes the structural characterization of this glycosaminoglycan (GAG) and provides new data on its impact on the catalytic properties of HSulf-2. The unrevealed nature of this GAG chain is identified as a chondroitin/dermatan sulfate (CS/DS) mixed chain, as shown by mass spectrometry combined with NMR analysis. It consists primarily of 6-O and 4-O monosulfated disaccharide units, with a slight predominance of the 4-O-sulfation. Using atomic force microscopy, we show that this unique post-translational modification dramatically impacts the enzyme hydrodynamic volume. We identified human hyaluronidase-4 as a secreted hydrolase that can digest HSulf-2 GAG chain. We also showed that HSulf-2 is able to efficiently 6-O-desulfate antithrombin III binding pentasaccharide motif, and that this activity was enhanced upon removal of the GAG chain. Finally, we identified five N-glycosylation sites on the protein and showed that, although required, reduced N-glycosylation profiles were sufficient to sustain HSulf-2 integrity.


Assuntos
Glicosaminoglicanos , Sulfatases , Humanos , Microscopia de Força Atômica , Proteoglicanas de Heparan Sulfato , Sulfatos de Condroitina/metabolismo , Espectrometria de Massas
2.
Nat Commun ; 13(1): 5113, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-36042212

RESUMO

Glycosaminoglycans are highly anionic functional polysaccharides with information content in their structure that plays a major role in the communication between the cell and the extracellular environment. The study presented here reports the label-free detection and analysis of glycosaminoglycan molecules at the single molecule level using sensing by biological nanopore, thus addressing the need to decipher structural information in oligo- and polysaccharide sequences, which remains a major challenge for glycoscience. We demonstrate that a wild-type aerolysin nanopore can detect and characterize glycosaminoglycan oligosaccharides with various sulfate patterns, osidic bonds and epimers of uronic acid residues. Size discrimination of tetra- to icosasaccharides from heparin, chondroitin sulfate and dermatan sulfate was investigated and we show that different contents and distributions of sulfate groups can be detected. Remarkably, differences in α/ß anomerization and 1,4/1,3 osidic linkages can also be detected in heparosan and hyaluronic acid, as well as the subtle difference between the glucuronic/iduronic epimers in chondroitin and dermatan sulfate. Although, at this stage, discrimination of each of the constituent units of GAGs is not yet achieved at the single-molecule level, the resolution reached in this study is an essential step toward this ultimate goal.


Assuntos
Glicosaminoglicanos , Nanoporos , Sulfatos de Condroitina/química , Dermatan Sulfato/análise , Dermatan Sulfato/química , Glicosaminoglicanos/química , Polissacarídeos/análise , Sulfatos
3.
Glycobiology ; 31(7): 751-761, 2021 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-33442722

RESUMO

Mammalian hyaluronidases are endo-N-acetyl-D-hexosaminidases involved in the catabolism of hyaluronic acid (HA) but their role in the catabolism of chondroitin sulfate (CS) is also examined. HA and CS are glycosaminoglycans implicated in several physiological and pathological processes, and understanding their metabolism is of significant importance. Data have been previously reported on the degradation of CS under the action of hyaluronidase, yet a detailed structural investigation of CS depolymerization products remains necessary to improve our knowledge of the CS depolymerizing activity of hyaluronidase. For that purpose, the fine structural characterization of CS oligosaccharides formed upon the enzymatic depolymerization of various CS subtypes by hyaluronidase has been carried out by high-resolution Orbitrap mass spectrometry (MS) and extreme UV (XUV) photodissociation tandem MS. The exact mass measurements show the formation of wide size range of even oligosaccharides upon digestion of CS-A and CS-C comprising hexa- and octa-saccharides among the main digestion products, as well as formation of small quantities of odd-numbered oligosaccharides, while no hyaluronidase activity was detected on CS-B. In addition, slight differences have been observed in the distribution of oligosaccharides in the digestion mixture of CS-A and CS-C, the contribution of longer oligosaccharides being significantly higher for CS-C. The sequence of CS oligosaccharide products determined XUV photodissociation experiments verifies the selective ß(1 â†’ 4) glycosidic bond cleavage catalyzed by mammal hyaluronidase. The ability of the mammal hyaluronidase to produce hexa- and higher oligosaccharides supports its role in the catabolism of CS anchored to membrane proteoglycans and in extra-cellular matrix.


Assuntos
Sulfatos de Condroitina , Hialuronoglucosaminidase , Animais , Sulfatos de Condroitina/química , Dermatan Sulfato/química , Hialuronoglucosaminidase/química , Mamíferos/metabolismo , Espectrometria de Massas , Oligossacarídeos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...